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Abstract— Flexible distribution of data in the form of quantum
bits (qubits) amongst spatially separated entities is an essential
component of envisioned scalable quantum computing architec-
tures. Since qubits cannot be copied, this operation of moving
qubits can be relatively costly in terms of resources. Moreover,
implementation of quantum gates requires precise and extensive
classical control and computation too. Accordingly, we consider
the problem of dynamically permuting groups of qubits, i.e., qubit
packets using reconfigurable quantum switches in which routing
information is calculated classically as a possible way to reduce
this cost. We design a 2× 2 switch based on the controlled-swap
quantum gate and show that if switch settings are determined
using efficient classical algorithms, then quantum switches can
be mapped onto classical non-blocking interconnection switch
topologies with low cost by using this switch. Specific quantum
switch designs for the optimal Beneš network and the planar
Spanke-Beneš network are given.

I. INTRODUCTION

Quantum computers can solve many interesting problems
with substantial advantages over known algorithms with tra-
ditional computation. the most well known results include
Shor’s algorithm for factoring a product of large primes in
polynomial time [1] and Grover’s algorithm for a O(

√
N)

search on an unstructured database [2]. Other algorithms
include adiabatic solution of optimization problems [3], Pell’s
equation [4] and Gauss Sums [5]. As a result there has
been a tremendous interest in investigating issues related to
quantum computing. Any realistic scenario for the future of
quantum computing involves spatially distributed quantum
devices which interact with each other. This spatial aspect
introduces as a critical requirement the need for quantum wires
which transport qubits. Transferring qubits and hence building
quantum wires is not trivial as, in general, qubits can not be
copied, which is a consequence of the quantum no-cloning
theorem. Each qubit must be physically transported from the
source to the destination, a restriction causing great constraints
on quantum data distribution. In [6], [7] a proposal is given for
building quantum wires using solid-state technologies: short
wires which transfer information by swapping qubits and long
wires which use quantum teleportation. The complex nature
of such quantum wires means that the O(N2) wires needed
to fully connect N spatially distributed quantum devices can
incur a huge cost in implementing quantum systems.

Quantum non-blocking switches can reduce this cost by
allowing full connectivity between N devices with only O(N)
quantum wires. The idea is that each device inputs qubits

along its own quantum wire to the switch which then switches
them to the required destination. Tsai and Kuo [8] gave
a method to permute individual qubits (not qubit packets)
using fixed or non-reconfigurable quantum circuits. They de-
compose a given permutation into disjoint cycles and these
cycles into transpositions or swaps to generate a quantum
circuit which realizes only that particular permutation. Thus,
a new circuit needs to be designed for each permutation
using this method. Reconfigurable or controllable quantum
switches can avoid this problem. In addition to reducing wire
count, reconfigurable quantum switches can form fundamental
parts of the quantum data distribution system in envisioned
architectures for scalable quantum computing. For example, in
the Quantum Logic Array (QLA) microarchitecture proposed
in [9] the high-level quantum computer structure consists of
logical qubits connected with a programmable communication
network where integrated switch islands are used to redirect
quantum data from nearby logical qubits.

The authors of this paper were the first to propose recon-
figurable quantum switches to permute qubit packets [10],
[11]. Our aim in these designs was not only to permute qubit
packets but also to explicitly utilize quantum superposition
to reduce the problem of blocking in packet switches. As
a result we used blocking switch topologies (which do not
route all permutations) and these switches cannot realize all
permutations. Cheng and Wang have proposed a reconfigurable
Batcher Sorter based fully non-blocking quantum switch made
up of Θ(N log2N) 2 × 2 sorters [12] with routing done in
the quantum domain. This switch permutes single qubits only,
not qubit packets. Each sorter potentially requires Θ(logN)
elementary quantum gates to implement which leads to a
total gate count of Θ(N log3N). This is a high cost com-
pared to many classical fully non-blocking switching networks
which use Θ(N logN) gates. Serial routing algorithms for
such networks, like the “looping” algorithm have O(N logN)
complexity and hence are only suitable for offline routing [13].
Faster parallel algorithms for online routing take O(log2N)
time but also need N fully connected processors [14], [15]. For
permuting qubits dynamically, keeping the route calculation
in the classical domain while implementing the switch using
quantum circuits based on such topologies gives us the best
of both worlds, i.e., efficient routing and a low cost qubit
switching network. This is a reasonable choice as virtually
all proposed scalable implementations of quantum computing



namely trapped ions[16] and solid-state silicon based sys-
tems [17] require significant and precise classical control to
implement quantum gates and qubit manipulations. The ready
availability of classical computation resources implies that
classical route computation should fit nicely in this framework.

In this paper we show that to dynamically permute
qubits in any arbitrary permutation we can use any classical
non-blocking switching network topology with the internal
switches replaced by reconfigurable quantum switches. Note
that unlike in our previous work [10], [11] we are not explicitly
creating superpositions in the quantum switches to reduce
blocking as we are using non-blocking topologies which can
route all the N ! permutations between N inputs and N out-
puts. The switch settings can be determined classically using
any well known efficient routing algorithm for that topology.
By doing so we can take advantage of the vast number of
“classical” non-blocking switching fabrics which have already
been investigated and found to have many, e.g., the Beneš
network which uses O(N logN) switches and can be routed
in O(N logN) serial time [13]. Specifically, we describe the
operation of a 2 × 2 quantum switch implemented using a
controlled-swap gate. The arrangement of such switches to
form a non-blocking network is illustrated via the examples
of the N ×N Beneš network and the N ×N Spanke-Beneš
network.

The remainder of the paper is organized as follows. In
Section II we introduce some basic concepts related to quan-
tum computing needed to understand the subsequent material.
Section III shows the working of our controlled-swap gate
based 2 × 2 quantum switch. In Section IV we give the
design and operation of N ×N Beneš and Spanke networks
constructed using such switches. Section V concludes the
paper.

II. PRELIMINARIES

We give a brief overview of the basic terminology and
building blocks of quantum computation. The purpose of this
section is to introduce the terms and notation used in the
subsequent parts of the paper. An in-depth treatment of the
same can be found in [18].

A. Qubits and Quantum States

A quantum bit or qubit is the quantum analogue of the
classical bit. A qubit, ψ, is described by the equation |ψ〉 =
a0|0〉 + a1|1〉 where the probability amplitudes a0 and a1

are complex numbers whose modulus squared sums to one,
i.e., |a0|2 + |a1|2 = 1. Here the “classical” states |0〉 and
|1〉 form the computational basis states. In the case when
both a0 and a1 are non-zero, qubit |ψ〉 is said to be in a
superposition of the basis states. Some examples for valid
qubit states are |0〉, |1〉, 1√

2
|0〉 + 1√

2
|0〉 and −i

2 |0〉 +
√

3
2 |0〉.

Larger quantum systems can be composed from multiple
qubits, e.g., |01〉 or 1

2 |01〉+ 1√
2
|10〉− 1

2 |11〉. Thus, in general,

an n-qubit system can be represented as
∑2n−1

x=0 ax|x〉 where
x are n-bit binary strings representing the basis states and
ax are the corresponding complex probability amplitudes.

c⊕ t
X

t

c c

Fig. 1. The CNOT gate.

The composition of qubits into a multi-qubit representation
is done using the tensor product operator ⊗, |x〉 ⊗ |y〉 =∑

x ax|x〉 ⊗
∑

y ay|y〉 =
∑

x,y axay|x⊗ y〉 where x ⊗ y is
the string formed by concatenating x and y.

In addition to superposition quantum systems exhibit the
unique property of entanglement which has no classical ana-
logue. Entanglement occurs when a multi-qubit state can not
be expressed as a composition (tensor product) of smaller qubit
states, e.g., there exist no single qubit states |ψA〉 and |ψB〉
such that the two qubit state |ψ〉 = 1√

2
|01〉 + 1√

2
|10〉 can

be expressed as the composite state |ψA〉 ⊗ |ψB〉. Thus, the
state of the larger quantum system can not be expressed as a
product of its parts.

Although a quantum system can exist in a superposition of
orthogonal states, only one of those states can be observed
or measured. After measurement, the quantum system is no
longer in a superposition, the quantum state collapses into the
measured state and the probability amplitude of all the other
states goes to zero. The probability of measuring a particular
state is given by the square of the modulus of its probability
amplitude, e.g., when |ψ〉 = 1√

2
|10〉 + 1√

2
|01〉 is measured,

the outcome is either 10 or 01 with equal probability, 00 or
11 is never measured. Also, if a subset of qubits are measured
then the rest of the qubits are left in a state consistent with
that measurement.

B. Quantum Gates

Quantum gates are used to manipulate qubits just as classi-
cal bits are manipulated by gates such as NOT, XOR and AND.
Single qubit gates include the X gate (similar to NOT), the Z
gate (phase flip) and the H or Hadamard gate. The mappings
performed by these gates are:

a|0〉+ b|1〉 X−→ b|0〉+ a|1〉 (1)

a|0〉+ b|1〉 Z−→ a|0〉 − b|1〉 (2)

a|0〉+ b|1〉 H−→ a+ b√
2
|0〉+

a− b√
2
|1〉 (3)

Note that H gate does the conversions |0〉 → 1√
2
|0〉+ 1√

2
|1〉

and |1〉 → 1√
2
|0〉 − 1√

2
|1〉. Two qubit gates include the

Controlled-NOT (CNOT) gate shown in figure 1. This gate
inverts the target qubit, t, for states in which the source or
control qubit, c is one. This mapping can be written as:

|c〉|t〉 C−NOT−−−−−−→ |c〉|c⊕ t〉 (4)

The CNOT gate is the analogue of the classical XOR gate.
Such gates can be extended to quantum gates with multiple
control qubits. In quantum circuits drawn using such gates the



(a) Schematic for the switch
gate.

Y

|c〉 = |1〉

|β〉 = a2|0〉+ b2|1〉

|α〉 = a1|0〉+ b1|1〉

|α〉 = a1|0〉+ b1|1〉

|β〉 = a2|0〉+ b2|1〉

X

(b) Cross state, |c〉 = |1〉.

Y

|β〉 = a2|0〉+ b2|1〉

|α〉 = a1|0〉+ b1|1〉

X

|c〉 = |0〉

|α〉 = a1|0〉+ b1|1〉

|β〉 = a2|0〉+ b2|1〉

(c) Through state, |c〉 = |0〉.

Fig. 2. Quantum Switch Gate.

horizontal lines represent qubits which evolve in time from
left to right.

III. 2× 2 QUANTUM SWITCH

The basic building block of the proposed reconfigurable
quantum switch fabrics is the controlled-2× 2 quantum swap
gate (also known as the Fredkin gate). This gate is shown in
figure 2. A circuit for this gate using two Controlled-NOT
(CNOT) and one Toffoli (Controlled-Controlled NOT) gate is
given in figure 2(a) along with the equivalent representation
we will use later in the paper.

We give a detailed explanation of the operation of this gate
below.

Let the input to the switch in figure 2 be

|α〉 ⊗ |β〉 (5)
= (a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) (6)

= a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉 (7)

In the first Controlled-NOT (CNOT) gate, the second qubit
is flipped if the first qubit is |1〉. Thus, the qubit state at X is:

a1a2|00〉+ a1b2|01〉+ b1b2|10〉+ b1a2|11〉 (8)

Note that the last two coefficients have been swapped and the
resulting state can no longer be expressed as a tensor product
of two independent qubit states, i.e., the two qubits are now
entangled. Now, if the control qubit, c, is equal to |1〉, the
second gate (Toffoli gate) fires and the resulting state at Y in
figure 2(b) is

a1a2|00〉+ a1b2|11〉+ b1b2|10〉+ b1a2|01〉 (9)

In this state the two qubits are still entangled. After passing
through the final CNOT gate, the output state is given by

a1a2|00〉+ b1a2|01〉+ a1b2|10〉+ b1b2|11〉 (10)
= (a2|0〉+ b2|1〉)⊗ (a1|0〉+ b1|1〉) (11)

= |β〉 ⊗ |α〉 (12)

Thus, we see that by setting the control qubit we can swap the
input qubits, or equivalently put the switch in a “cross” state.
When the control qubit, c, is equal to |0〉, then the second gate
does not fire and the state at the output (as seen in figure 2(c))
is

a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉 (13)
= (a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) (14)

= |α〉 ⊗ |β〉 (15)

which is the same as the input state, thus we see that the switch
is in a “through” or “pass” state when c is |0〉. Therefore, we
have configurable 2 × 2 quantum switch which can be used
to pass or swap two qubits depending on the setting of the
control qubit.

Note that switching qubits involves only the exchange of
the qubit co-efficients a1, b1 and a2, b2. Unlike conventional
or “classical” switching with normal bits, there is no physical
movement of qubits between the terminals in the switching
operation, we merely exchange the information between the
two qubits to be switched. Also, one qubit c can be used
to control many such switches in parallel, hence, we can
switch groups or packets of qubits. Though the swap gate can
be composed from CNOT gates as shown above, it is often
available natively for a given technology, leading to savings
in the gate count for quantum switches.

IV. N ×N QUANTUM SWITCHES WITH CLASSICAL
ROUTING

We describe the structure and routing for the Beneš and
Spanke-Beneš switches in this section.

A. Quantum Beneš Switch

A N ×N Beneš network (N = 2n) is defined recursively
as shown in figure 3. It consists of 2 logN −1 stages of 2×2
switches, with each stage having N/2 such switches. This
can be seen more clearly in the fully expanded 8 × 8 Beneš
network shown in figure 4(a). The smaller 4 × 4 and 2 × 2
Beneš networks are enclosed by dotted boxes in figure 4(a).
The corresponding Beneš switching fabric constructed using
quantum switches is shown in 4(b). The quantum switch
is drawn in the traditional quantum circuit representation
without any crossovers or rearrangeable lines which represent
qubits. It can be easily verified that the connection pattern
is same in both the cases. The Beneš network is known to
be rearrangeably non-blocking, i.e., for any permutation, say

N
2 ×

N
2 Beneš Network

N
2 ×

N
2 Beneš Network

Fig. 3. The N ×N Beneš Network.



(a) The classical 8 × 8 Beneš net-
work

(b) The quantum 8 × 8 Beneš net-
work

Fig. 4. 8× 8 Classical and Quantum Beneš Networks.
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Fig. 5. Looping algorithm on a Beneš network

π, there exists a setting of the 2 × 2 switches such that
π can be realized by the network. Many serial as well as
parallel routing algorithms are known for this network, the
simplest of which is the so-called “looping algorithm” [13].
The main idea behind this algorithm is shown in figure 5.
Assume that we have to realize the permutation map π, i.e.,
input i is to be routed to output π(i). Any two inputs or any
two outputs connected to the same 2 × 2 switch are called
buddies. Let the upper N/2 × N/2 Beneš network be B1

and the lower N/2×N/2 Beneš network be B2. In figure 5
assume that we start the routing from input 1. The switch
connected to input 1 is arbitrarily set to through state so that
1 gets routed to B1. Follow the output of B1 going to the
switch connected to π(1) to determine the state of this switch
(through in this case). Loop to the buddy output for π(1):
π(3) and follow the route to B2 and continue the loop on the
input side till we reach input 1 again. The loop in this case is
1 → π(1) → π(3) → 3 → 4 → π(4) → π(2) → 2 and the
corresponding switch settings in order are through-through-
cross-through. Now we can pick any other unrouted input and
follow the same process again till all switches in the first and
last stages are set. We see that the dotted lines in B1 and B2

form 2 new permutations. The same process can be repeated
on them recursively till all the switch settings for the whole
network are found. The complexity of this algorithm is clearly
O(N logN).

Once the switch settings are known the corresponding
control qubits for the quantum switches can be set to either
|1〉 or |0〉 depending on whether the switch is in “cross” or
“through” state respectively. In scalable implementations of
quantum computers [17], [16] often it is easier to form gates
by making only adjacent or nearly adjacent qubits interact with
each other. Although the Beneš network has asymptotically
optimal number of switches (O(N logN)), the internal paths

(a) Classical Spanke-Beneš Network.

(b) Quantum Spanke-Beneš Network.

Fig. 6. 8× 8 Spanke-Beneš Network.

cross each other which implies that non-adjacent qubits need
to interact with each other leading to greater overhead asso-
ciated with transporting these qubits. Thus, planar switching
networks which do not have any crossing of internal lines are
suitable candidates for making switches in such technologies.
One such switch, the Spanke-Beneš switch, is described below.

B. Quantum Spanke-Beneš Switch

An N × N Spanke-Beneš network is a planar network
containing N stages of 2× 2 switches as seen in figure 6(a).
This network was originally proposed for optical switches
with the aim of minimizing crosstalk due to crossing of
waveguides or optical fibers which form the “optical wires” in
the switch [19]. Note that any switch only connects adjacent
input and output lines and hence, the network is planar and
has no crossings of wires. Also note that the corresponding
quantum switching network shown in figure 6(b) has exactly
the same structure due to the planar nature of this network.
This network is also non-blocking, i.e., it can route all N !
permutations but it has a switch count of N(N − 1)/2
which was shown to be the minimum possible for a planar
permutation network in [19]. Spanke-Beneš networks are a
special case of the more general cellular arrays described first
by Kautz et al [20]. The routing cost on the Spanke-Beneš
network is O(N). The routing algorithm is based on a
iterative procedure of routing inputs in sequence from input 1
to input N . After an input is routed the cells or switches set
along its path are removed to get a N − 1 ×N − 1 network
which is then routed using the same process. The algorithm is
shown step-by-step in figure 7. Briefly, the steps (from [19])
are:

(1) Let the permutation map be given by π where input i is
mapped to output π(i) i = 1, · · · , N .
(2) Route the 1 → π(1), signal by continuing straight across
the planar network (i.e., set switches in the through state)
until the last possible stage. With the network oriented as in
figure 6(a), this is the N − dπ(1)/2e stage.
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(c) Condense to N−1×N−1 network.

Fig. 7. Routing on 8× 8 Spanke-Beneš Network [19].

(3) Cut downward through the rest of the network (i.e., set
switches in the cross state) starting with stage N − dπ(1)/2e
and continuing through stage N − 1, to reach the switch of
π(1).
(4) Set the switch in stage N as required to achieve desired
output. Figure 7(a) depicts the N ×N network with signal 1
routed.
(5) Delete the completed path and associated switches from
the network (figure 7(b)). (6) Move the separated upper
right corner triangle down and left to reconstruct the planar
topology. Set any switches remaining in stage N below output
π(1), to the through state (figure 7(c)).
(7) What remains is an N − 1×N − 1 planar network. This
can be routed by recursively applying steps 1-6 and reducing
switch dimensions by 1 in each iteration.
By initializing the control qubits for the switches in cross state
to |1〉 and those in through state to |0〉 we can realize any
permutation map π.

V. CONCLUSION

Movement or communication of qubits amongst spatially dis-
tributed entities is a fundamental feature of scalable quantum
computing architectures. Since qubits cannot be copied, this
operation of moving sets of qubits can be relatively costly
in terms of resources. Moreover, implementation of quantum
gates requires precise and extensive classical control and com-
putation too. Hence, we have proposed reconfigurable qubit

switches based on well known switching network topologies
which have quantum switching planes and in which routing
information is calculated classically as a possible way to
reduce this cost. A specific design for the asymptotically op-
timal Beneš network was given. In many quantum computing
technologies it is easier to make closer or adjacent qubits
interact with each other, hence we also gave the design of a
quantum Spanke-Beneš network which by virtue of its planar
topology is easier to implement in such instances.
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switch,” in Proceedings of the 38th Annual Conference on Information
Sciences and Systems CISS’04, Princeton, NJ, USA, March 2004, pp.
484–489.

[11] ——, “The quantum baseline network,” in Proceedings of the 39th
Annual Conference on Information Sciences and Systems CISS’05, Johns
Hopkins University, Baltimore, MD, March 2005.

[12] S. T. Cheng and C. Y. Wang, “Quantum switching and quantum merge
sorting,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 53, no. 2, pp. 316–325, Feb 2006.
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